Special Products of Polynomials
Overview
Special products are specific forms of polynomial multiplication that follow unique patterns. Recognizing these patterns can make it easier to multiply polynomials without fully expanding each term. The most common types are:
Types of Special Products
- Square of a Binomial: \( (a + b)^2 = a^2 + 2ab + b^2 \)
- Difference of Squares: \( (a + b)(a - b) = a^2 - b^2 \)
- Cube of a Binomial: \( (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \)
Examples
1. Square of a Binomial
Example: \( (x + 5)^2 \)
\( = x^2 + 2(x)(5) + 5^2 \)
\( = x^2 + 10x + 25 \)
2. Difference of Squares
Example: \( (x + 4)(x - 4) \)
\( = x^2 - 4^2 \)
\( = x^2 - 16 \)
3. Cube of a Binomial
Example: \( (x + 2)^3 \)
\( = x^3 + 3(x^2)(2) + 3(x)(2^2) + 2^3 \)
\( = x^3 + 6x^2 + 12x + 8 \)
Practice Questions
- Question 1: Square of a Binomial
\( (3x + 4)^2 \)
Solution
Apply the formula \( (a + b)^2 = a^2 + 2ab + b^2 \):
\( = (3x)^2 + 2(3x)(4) + 4^2 \)
\( = 9x^2 + 24x + 16 \)
- Question 2: Difference of Squares
\( (x + 7)(x - 7) \)
Solution
Apply the formula \( (a + b)(a - b) = a^2 - b^2 \):
\( = x^2 - 7^2 \)
\( = x^2 - 49 \)
- Question 3: Square of a Binomial
\( (5x - 3)^2 \)
Solution
Apply the formula \( (a - b)^2 = a^2 - 2ab + b^2 \):
\( = (5x)^2 - 2(5x)(3) + (3)^2 \)
\( = 25x^2 - 30x + 9 \)
- Question 4: Cube of a Binomial
\( (x - 4)^3 \)
Solution
Apply the formula \( (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \):
\( = x^3 - 3(x^2)(4) + 3(x)(4^2) - 4^3 \)
\( = x^3 - 12x^2 + 48x - 64 \)
- Question 5: Difference of Squares
\( (2x + 5)(2x - 5) \)
Solution
Apply the formula \( (a + b)(a - b) = a^2 - b^2 \):
\( = (2x)^2 - 5^2 \)
\( = 4x^2 - 25 \)